MICROSAS 384 INTERNALLY COOLED AND CALIBRATED, SMALL FORM FACTOR, HYPERSPECTRAL SWIR IMAGER

FIELD-PORTABLE HYPERSPECTRAL MICRO-SWIR IMAGER FOR AIR & GROUND USE

Portable Air/Ground Hyperspectral SWIR Imager

1.0-2.5µm Spectral Coverage

256 Spectral Bands

40° FOV

384 Spatial Imaging Pixels

GNSS/MEMS-Inertial System Capability

Diffraction-Limited Optics Across Spectrum

Custom Fore-Optics Available

Self-Contained Camera and Data Recording

Internal Calibration System

Internally Cooled

Optional GPS/IMU

Easy Lidar Integration

Remote Operation via R/F Link or

Autonomous via Waypoints

Precision Data Time Stamping to External Devices

API Available

Target Detection and Synthetic Materials Mapping / Classifications / Geological Exploration / Vegetation Speciation / Aquatic Pollution Presence / Utility Corridor Mapping / Mineral Composition

PERFORMANCE	
Spectral Range	1.0-2.5 microns (Continuous
# Spectral Channels	256
# Across-Track Pixels	384
Total Field of View	40 degrees
IF0V	1.8 mRad (0.1 degrees)
f/#	f/2.5
Spectral Width Sampling /Row	5.9 nm
Pixel Size	24 x 24 microns
Dynamic Range	14-bits
Detector Full Well	≥ 1.0 Me
Data Rate	≥ 150 FPS
Spectral Smile/Keystone	< ±0.35 pixels
Calibration Accuracy	≤ 2% (NIST-Traceable)
Data Recording Capacity	≥480 GB (SSD, SATA III)
(12 hrs @ 50 fps)	
Data Recording Capacity (hr)	4.0 hours @ 150 fps

ITEM	W / H / D (CM) / WT. (KG)
SHU, Control, Recording	10 / 23 / 25 / 3.8kg ¹
Power Draw	24-32VDC, ~70W1
	¹ Subject to change
OPERATION	
Operator	Control remotely via laptop
	& existing R/F downlink, or
	pre-programmed track and
	waypoints.
Multiple Sensor Operation	Up to 5 ITRES imagers may
	be simultaneously operated
	via MuSIC system

INTERFACE, TIME-STAMPING, REMOTE OPERATION & CONTROL

- GigE or USB-3
- · TTL input for waypoint trigger
- Automated control for pre-planned coordinates (requires MEMS inertial (accepts .shp, .kml, etc.)
- · Precision data time-stamping to external devices

DATA PROCESSING SYSTEM

- · Processing software Linux or Windows-based
- Playback software (Quicklook)
- Generates 16-32 bit BIP format data compatible with ENVI (BIL, BSQ formats possible)

GEOCORRECTION SYSTEM

- GNSS-inertial or MEMS-inertial integration (optional)
- Data synchronization (GPS, attitude, & image streams, if INS

¹Many inertial systems can be used with ITRES micro imagers. Required outputs are pulse per second (PPS) and suitable GNSS timing records.

GEOCORRECTION/ORTHOCORRECTION/MOSAICKING SOFTWARE

- · Accepts Lidar, Ifsar, and USGS DEM inputs
- Nearest neighbor algorithm used maintains radiometric fidelity

